Invertebrate Evolution

Organisms: Basic To Complex

Porifera: Sponge

Cnidaria: Jelly Fish

Platyhelminthes: Flatworm

Nematoda: Roundworm

Annelida: Segmented Worms

Organisms: Even More Complex

Mollusca: Mollusks

Arthropoda: Crustaceans

Arthropoda: Spiders

Arthropoda: Insects

Echinodermata: Sea Star

Evolutionary Trends

(Simple to Complex)

Specialized Cells

Tissues

Organs

Organ Systems

Choanocytes capture food; archaeocytes digest the food and take nutrients to other cells.

Nervous Tissue

Cnidarians have a nerve net running throughout their bodies. There is no control center (brain).

Land species usually have lungs; water species usually have gills.

external gills

Digestive System

Types of Symmetry

Asymmetrical

(no symmetry)

no 2 halves will be the same

Radial Symmetry

more
complex
than
spherical
but not
the most
complex

has a top and bottom but no front, back, right, or left

cutting down a longitudinal axis gets equal halves

Bilateral Symmetry

the most complex

there is only 1 way you can get 2 equal halves

Cephalization

possibly the smartest invertebrate

Segmentation

larger size with minimal DNA (repeating pattern)

specialized functions

Summary of Body Plans

Early Developmental Stages of Animals

Fertilization

- the combining of a sperm with an egg

the result is called a zygote

Pictures of Zygotes

frog

human

Early Cell Divisions

- the zygote cleaves to become 2, 4, & 8 cells

early cell divisions are called cleavage

Pictures of 2 Cell Stage

Pictures of 4 Cell Stage

8 cells become 16 cells

the 16 & 32 cell stage is called a morula

Pictures of 16 celled Morula

Pictures of 32 Celled Morula

Blastulation

blastulation

zygote

blastula

After several more divisions, the stage is called a blastula.

The entire process of changing from a zygote to a blastula is called blastulation.

The Blastula

Pictures of Blastula

Review of Blastulation

A. 1 cell

B. 2 cells

C. 4 cells

D. 8 cells

E. morula

F. blastula

Gastrulation

- a blastula becoming a gastrula

invagination - the folding inward of an object

Gastrulation

Gastrulation starts with the folding inward of cells at a spot called the blastopore.

Pictures of a Gastrula

Result of Gastrulation

Gastrulation creates a cavity "gut" that will become the digestive system. In addition, gastrulation results in 2 or 3 cell layers (called "germ" layers).

3 Germ Layers from Gastrulation

Ectoderm

- skin and nervous system

Endoderm

- digestive system

Mesoderm

- muscles and other internal organs systems

Protostomes vs. Deuterostomes

proto = first

stome = mouth

deutero = second

Summary of Development

- the term "embryo" is usually used for any stage of development